Affordable Access

Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on growth factor expression in the human breast cancer cell line MCF-7.

Authors
  • Vogel, C
  • Abel, J
Type
Published Article
Journal
Archives of toxicology
Publication Date
Jan 01, 1995
Volume
69
Issue
4
Pages
259–265
Identifiers
PMID: 7755487
Source
Medline
License
Unknown

Abstract

The aim of this study was to examine whether changes in growth factor or cytokine expression could be responsible for the growth inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the human breast cancer MCF-7 cell line. Treatment of MCF-7 cells with 10 nM TCDD for 7 days reduced the cell growth to 60% of control; this effect was partly abolished by cotreatment of the cells with 100 nM 17 beta-estradiol (E2). The inhibition of cell growth by TCDD was accompanied by an enhanced secretion of transforming growth factor-beta (TGF-beta) and the TGF-beta content in cell culture supernatants was 2-fold higher than in controls. Using reverse transcription polymerase chain reaction (RT-PCR), the effect of TCDD on the expression of TGF-beta isoforms, transforming growth factor-alpha (TGF-alpha), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) was investigated. It was demonstrated that incubation with 1, 10 and 100 nM TCDD for 24 h increased mRNA levels of TGF-alpha, TNF-alpha and IL-1 beta. The strongest effect was found on IL-1 beta, the mRNA level of which was dose-dependently increased. TCDD had a minor effect on TGF-alpha and TNF-alpha mRNA. The mRNA levels were significantly increased after treatment with 10 and 100 nM TCDD. The mRNA expression of TGF-beta 1 and TGF-beta 2 was unchanged, whereas the TGF-beta 3 mRNA level was enhanced 2 to 3-fold after TCDD treatment. From the results, we suggest that TCDD-induced growth inhibition in MCF-7 cells is related to the growth inhibitory action of a set of growth factors and cytokines which have a contextual action on MCF-7 cell proliferation.

Report this publication

Statistics

Seen <100 times