Affordable Access

Publisher Website

Vivianite formation and distribution in Lake Baikal sediments

Global and Planetary Change
Publication Date
DOI: 10.1016/j.gloplacha.2004.09.022
  • Lake Baikal
  • Late Quaternary
  • Sediment
  • Vivianite
  • Geochemistry
  • Chemistry
  • Earth Science
  • Physics


Abstract In an effort to better understand vivianite formation processes, four Lake Baikal sediment cores spanning two to four interglacial stages in the northern, central and southern basins and under various biogeochemical environments are scrutinized. The vivianite-rich layers were detected by anomalous P-enrichments in bulk geochemistry and visually by observations on X-radiographs. The millimetric concretions of vivianite were isolated by sieving and analysed by X-ray diffraction, scanning electron microscope (SEM), microprobe, infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and mass spectrometry (ICP-AES, ICP-MS). All the vivianites display similar morphological, mineralogical and geochemical signature, suggesting a common diagenetic origin. Their geochemical signature is sensitive to secondary alteration where vivianite concretions are gradually transformed from the rim to the center into an amorphous santabarbaraite phase with a decreasing Mn content. We analysed the spatial and temporal distribution of the concretions in order to determine the primary parameters controlling the vivianite formation, e.g., lithology, sedimentation rates, and porewater chemistry. We conclude that vivianite formation in Lake Baikal is mainly controlled by porewater chemistry and sedimentation rates, and it is not a proxy for lacustrine paleoproductivity. Vivianite accumulation is not restricted to areas of slow sedimentation rates (e.g., Academician and Continent ridges). At the site of relatively fast sedimentation rate, i.e., the Posolsky Bank near the Selenga Delta, vivianite production may be more or less related to the Selenga River inputs. It could be also indirectly related to the past intensive methane escapes from the sediments. While reflecting an early diagenetic signal, the source of P and Fe porewater for vivianites genesis is still unclear.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times