Affordable Access

Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

The Journal of Cell Biology
The Rockefeller University Press
Publication Date
  • Articles
  • Biology
  • Pharmacology


Using pharmacological (Simpson, L.L., 1980, J. Pharmacol. Exp. Ther. 212:16-21) and autoradiographic techniques (Black, J.D., and J.O. Dolly, 1986, J. Cell Biol., 103:521-534), it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. This proposal is supported further by the fact that lysosomotropic agents, which are known to interfere with the endocytic pathway, retard the onset of BoNT-induced neuroparalysis and also affect the distribution of silver grains at nerve terminals treated with 125I-BoNT. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.

There are no comments yet on this publication. Be the first to share your thoughts.