Affordable Access

Lossy Links, Low Power, High Throughput

Authors
Publication Date

Abstract

As sensor networks move towards general-purpose low-power wireless networks, there is a need to support both traditional low-data rate traffic and high-throughput transfer. To attain high throughput, existing protocols monopolize the network resources and keep the radio on for all nodes involved in the transfer, leading to poor energy efficiency. This becomes progressively problematic in networks with packet loss, which inevitably occur in any real-world deployment. We present burst forwarding, a generic packet forwarding technique that combines low power consumption with high throughput for multi-purpose wireless networks. Burst forwarding uses radio duty cycling to maintain a low power consumption, recovers efficiently from interference, and inherently supports both single streams and cross-traffic. We experimentally evaluate our mechanism under heavy interference and compare it to PIP, a state-of-the-art sensornet bulk transfer protocol. Burst forwarding gracefully adapts radio duty cycle both to the level of interference and to traffic load, keeping a low and nearly constant energy cost per byte when carrying TCP traffic.

There are no comments yet on this publication. Be the first to share your thoughts.