Affordable Access

The earth's hydrological cycle

Authors
  • Reul, N.
  • Fournier, S.
  • Boutin, J.
  • Hernandez, O.
  • Maes, Christophe
  • Chapron, B.
  • Alory, G.
  • Quilfen, Y.
  • Tenerelli, J.
  • Morisset, S.
  • Kerr, Yann
  • Mecklenburg, S.
  • Delwart, S.
Publication Date
Jan 01, 2014
Source
Horizon / Pleins textes
Keywords
Language
English
License
Unknown
External links

Abstract

While it is well known that the ocean is one of the most important component of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the first space-borne measurements of the sea surface salinity (SSS). In this paper, we present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land–ocean and atmosphere–ocean interaction processes that occur within the marine hydrological cycle. In particular, SMOS with its ocean mapping capability provides observations across the world's largest tropical ocean fresh pool regions, and we discuss from intraseasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations are shown to yield new freshwater budget insight. Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.

Report this publication

Statistics

Seen <100 times