Affordable Access

Publisher Website

Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed

Authors
Journal
Genetics Selection Evolution
0999-193X
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Volume
43
Issue
1
Identifiers
DOI: 10.1186/1297-9686-43-42
Keywords
  • Research
Disciplines
  • Biology
  • Medicine

Abstract

Background Good genetic progress for pig reproduction traits has been achieved using a quantitative genetics-based multi-trait BLUP evaluation system. At present, whole-genome single nucleotide polymorphisms (SNP) panels provide a new tool for pig selection. The purpose of this study was to identify SNP associated with reproduction traits in the Finnish Landrace pig breed using the Illumina PorcineSNP60 BeadChip. Methods Association of each SNP with different traits was tested with a weighted linear model, using SNP genotype as a covariate and animal as a random variable. Deregressed estimated breeding values of the progeny tested boars were used as the dependent variable and weights were based on their reliabilities. Statistical significance of the associations was based on Bonferroni-corrected P-values. Results Deregressed estimated breeding values were available for 328 genotyped boars. Of the 62 163 SNP in the chip, 57 868 SNP had a call rate > 0.9 and 7 632 SNP were monomorphic. Statistically significant results (P-value < 2.0E-06) were obtained for total number of piglets born in first and later parities and piglet mortality between birth and weaning in later parity, and suggestive associations (P-value < 4.0E-06) for piglet mortality between birth and weaning in first parity, number of stillborn piglets in later parity, first farrowing interval and second farrowing interval. Two of the statistically significant regions for total number of piglets born in first and later parities are located on chromosome 9 around 95 and 79 Mb. The estimated SNP effect in these regions was approximately one piglet between the two homozygote classes. By combining the two most significant SNP in these regions, favourable double homozygote animals are expected to have 1.3 piglets (P-value = 1.69E-08) more than unfavourable double homozygote animals. A region on chromosome 9 (66 Mb) was statistically significant for piglet mortality between birth and weaning in later parity (0.44 piglets between homozygotes, P-value = 6.94E-08). Conclusions Three separate regions on chromosome 9 gave significant results for litter size and pig mortality. The frequencies of favourable alleles of the significant SNP are moderate in the Finnish Landrace population and these SNP are thus valuable candidates for possible marker-assisted selection.

There are no comments yet on this publication. Be the first to share your thoughts.