Affordable Access

Publisher Website

Basement control on oblique thrust sheet evolution: seismic imaging of the active deformation front of the Central Andes in Bolivia

Publication Date
DOI: 10.1016/s0040-1951(02)00132-4
  • Thrusting
  • Strike–Slip Faults
  • Reflection Seismics
  • Strain Partitioning
  • Lateral Ramp
  • Bolivian Orocline


Abstract In the area of the Bolivian Orocline, we examine the deformation pattern associated with the active development of a new thrust sheet. A dense grid of reprocessed 2-D seismic lines from hydrocarbon exploration industry is interpreted and a 3-D simplified structural and kinematic model is deduced. In the Boomerang Hills, onlapping Paleozoic and foredeep sediments are detached from the underlying S-dipping basement. They are thrust northeastwards by less than 2 km. Two zones can be differentiated along the Andean deformation front: (1) a W–E to NW–SE striking frontal segment of predominantly orthogonal shortening, comprising a thrust and anticline system; (2) a WSW–ENE striking lateral zone of oblique shortening within a complex system of thin-skinned strike–slip faults and minor folds. The deformation front always follows a pronounced edge in the topography of the top basement surface close to the boundary of the Paleozoic basin. The observed deformation pattern indicates intensified strain partitioning caused by the interaction of contraction direction and basement topography, which provides a near oblique ramp for the onlapping wedge of sediments. The SW–NE thrusting direction is divided into orthogonal and tangential components. These are accommodated by convergent and strike–slip structures, respectively, which sole into a common detachment horizon. The structural evolution of the new thrust sheet in the Bolivian Orocline is primarily controlled by the paleorelief of the Brazilian Shield because: (1) the shape of the basement affects the taper of the thrust wedge and localizes the deformation front and (2) small asperities in/close to the top of the basement promote fault localization. The coincidence of a relatively high basement position and a structural high of the Eastern Cordillera leads to the conclusion that the shape of the Brazilian Shield also controls the structural evolution of the pronounced eastern border of the Bolivian Orocline.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times