Affordable Access

Bewertung der Unsicherheit hydrogeologischer Modelle unter Verwendung informationstheoretischer Grundlagen

Authors
Publisher
Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Publication Date
Keywords
  • Aic
  • Bic
  • Hydrogeologie
  • Informationstheorie
  • Modelvergleich
  • Modellwahl
  • Unsicherheitsanalyse
  • Hydrogeology
  • Model Ranking
  • Model Selection
  • Multi-Response Models
  • Uncertainty Analysis
  • Ddc:550
  • Rvk:Ar 22600

Abstract

Hydrogeologische Modellierung ist von erheblicher Unsicherheit geprägt. Überparametrisierte Modelle erhöhen die Unsicherheit, da gemessene Informationen auf alle Parameter verteilt sind. Die vorliegende Arbeit schlägt einen neuen Ansatz vor, um diese Unsicherheit zu reduzieren. Eine Möglichkeit, um dieses Ziel zu erreichen, besteht darin, ein Modell auszuwählen, das ein gutes Ergebnis mit möglichst wenigen Parametern liefert („parsimonious model“), und es zu kalibrieren, indem viele Informationsquellen genutzt werden. Das 1973 von Hirotugu Akaike vorgeschlagene Informationskriterium, bekannt als Akaike-Informationskriterium (engl. Akaike’s Information Criterion; AIC), ist ein statistisches Wahrscheinlichkeitskriterium basierend auf der Informationstheorie, welches die Auswahl eines Modells mit möglichst wenigen Parametern erlaubt. AIC formuliert das Problem der Entscheidung für ein gering parametrisiertes Modell als ein modellübergreifendes Optimierungsproblem. Die Anwendung von AIC in der Grundwassermodellierung ist relativ neu und stellt eine Herausforderung in der Anwendung verschiedener Messquellen dar. In der vorliegenden Dissertation werden maßgebliche Forschungsergebnisse in der Anwendung des AIC in hydrogeologischer Modellierung unter Anwendung unterschiedlicher Messquellen diskutiert. AIC wird an Grundwassermodellen getestet, bei denen drei synthetische Datensätze angewendet werden: Wasserstand, horizontale hydraulische Leitfähigkeit und Tracer-Konzentration. Die vorliegende Arbeit analysiert den Einfluss folgender Faktoren: Anzahl der Messungen, Arten der Messungen und Reihenfolge der kalibrierten Parameter. Diese Analysen machen nicht nur deutlich, dass die Anzahl der gemessenen Parameter die Komplexität eines Modells bestimmt, sondern auch, dass seine Diversität weitere Komplexität für gering parametrisierte Modelle erlaubt. Allerdings konnte ein solches Modell nur erreicht werden, wenn eine bestimmte Reihenfolge der kalibrierten Parameter berücksichtigt wurde. Folglich sollten zuerst jene Parameter in Betracht gezogen werden, die deutliche Verbesserungen in der Modellanpassung liefern. Der Ansatz, ein gering parametrisiertes Modell durch die Anwendung des AIC mit unterschiedlichen Informationsarten zu erhalten, wurde erfolgreich auf einen Lysimeterstandort übertragen. Dabei wurden zwei unterschiedliche reale Messwertarten genutzt: Evapotranspiration und Sickerwasser. Mit Hilfe dieser weiteren, unabhängigen Modellbewertung konnte die Gültigkeit dieses AIC-Ansatzes gezeigt werden.

There are no comments yet on this publication. Be the first to share your thoughts.