Affordable Access

Publisher Website

Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion

Authors
Journal
Earth and Planetary Science Letters
0012-821X
Publisher
Elsevier
Publication Date
Volume
80
Identifiers
DOI: 10.1016/0012-821x(86)90104-4

Abstract

Abstract Solid-recovery impact-induced volatile loss experiments on the Murchison C2M meteorite indicate that for an impact of a given velocity, H 2O and total volatiles are driven from the sample in the same proportion as present initially. We infer that the volatiles other than H 2O driven from the meteorite also have the same bulk composition as those of the starting material. Thus, the early bulk composition of an impact-induced atmosphere of a planet growing by accretion from material like Murchison would be the same as the volatile composition of the incident planetesimals. Incipient devolatilization of Murchison occurs at an initial shock pressure of about 11 GPa and complete devolatilization occurs at a pressure of about 30 GPa. If an Earth-sized planet were formed from the infall of planetesimals of Murchison composition, incipient and complete devolatilization of accreting planetesimals would occur when the planet reached approximately 12% and 27%, respectively, of its final radius. Thus, impact-induced devolatilization of accreting planetesimals and of the hydrated surface would profoundly affect the distribution of volatiles within the accreting planet. For example, for a cold, homogeneous accretion of a planet, prior to metallic core formation and internal differentiation, the growing planet would have a very small core with the same volatile content as the incident material, a volatile-depleted “mantle”, and an extremely volatile-rich surface.

There are no comments yet on this publication. Be the first to share your thoughts.