Affordable Access

Publisher Website

The deformation and fracture of balloons

Authors
Journal
International Journal of Non-Linear Mechanics
0020-7462
Publisher
Elsevier
Identifiers
DOI: 10.1016/j.ijnonlinmec.2014.08.009
Keywords
  • Rubber Balloons
  • Fracture Of Balloons
  • High Speed Cracks

Abstract

Abstract Inflation of balloons provides a straightforward way of achieving large biaxial deformations. Previous studies have shown that when a balloon bursts, crack propagation occurs at very high speed – much higher than would be expected from the low strain modulus and elastic wave velocity of the rubber. The present paper is concerned with studies of the deformation and fracture of cylindrical balloons. On inflation, the deformations of such a balloon pass through an unstable region but subsequently increase monotonically with pressure. In this relatively high pressure region, the ratio of the longitudinal and circumferential extension ratios is broadly in accord with expectations from high-strain elasticity theory when the ratio of the corresponding stresses is taken into account. On bursting, crack speeds up to around 300m/s in this region. It is shown that these speeds are in accord with large increase in incremental moduli for the highly-strained rubber. Marked changes in crack tip profile observed at very high crack speeds are consistent with control of the rate of growth by inertia rather than by the viscoelastic properties of the rubber (as is believed to be the case at lower speeds). Consistent with this, various elastomers having different glass transition temperatures show similar crack growth behaviour in the very high speed region.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments

More articles like this

[Support of an unusual orbital fracture by 2 ballo...

on Klinische Monatsblätter für... August 1986

WAR-BALLOONS.

on Science Feb 28, 1890

Balloons.

on CHEST Journal April 1989

Deformation and fracture of aluminium foams

on Materials Science and Engineer... Jan 01, 2000
More articles like this..