Affordable Access

Publisher Website

Interpretation of seismic and potential field data from western New York State and Lake Ontario

Publication Date
DOI: 10.1016/s0040-1951(02)00281-0
  • Seismic Reflection
  • Gravity
  • Aeromagnetics
  • Crustal Structure
  • Grenville Orogen
  • Clarendon–Linden Fault System
  • Paleozoic Stratigraphy
  • New York State
  • Lake Ontario
  • Mathematics


Abstract Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines. In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of ∼100 m; (2) Apparent local displacement on the order of ∼90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data. Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State. From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.

There are no comments yet on this publication. Be the first to share your thoughts.