Affordable Access

Publisher Website

Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders

Authors
Journal
Medical Hypotheses
0306-9877
Publisher
Elsevier
Publication Date
Volume
69
Issue
3
Identifiers
DOI: 10.1016/j.mehy.2006.12.045
Disciplines
  • Biology
  • Ecology
  • Geography
  • Medicine

Abstract

Summary The pathological role of the non-enzymatic modification of proteins by reducing sugars has become increasingly evident in various disorders. It is now well established that early glycation products undergo progressive modification over time in vivo to the formation of irreversible cross-links, after which these molecules are termed “AGEs (advanced glycation end products)”. AGEs have been implicated in the development of many of the pathological sequelae of diabetes and aging, such as diabetic microangiopathy, ischemic heart disease and neurodegenerative diseases. Recently, digested food-derived AGEs are also found to play an important role in the pathogenesis of AGE-related disorders. Diet is a major environmental source of pro-inflammatory AGEs. Indeed, restriction of dietary glycotoxins decreases excessive AGE levels and subsequently reduces the inflammatory responses in patients with diabetes. These observations suggest that inhibition of absorption of dietary AGEs may be a novel target for therapeutic intervention in the above-mentioned AGE-related disorders. AST-120 (Kremezin R) is an oral adsorbent that attenuates the progression of chronic renal failure (CRF) by removing uremic toxins. We have recently found that AST-120 binds to carboxymethyllysine (CML), one of the well-characterized, digested food-derived AGEs in vitro and that administration of AST-120 decreases serum levels of AGEs in non-diabetic CRF patients. These findings suggest that digested food-derived AGEs such as CML may be a novel molecular target for oral adsorbent AST-120 and that AST-120 could exert beneficial effects on CRF patients by adsorbing diet-derived AGEs and subsequently decreasing serum AGE levels. If our speculation is correct, AST-120 may have therapeutic potentials for the treatment of patients with various AGE-related disorders as well. In this paper, we would like to propose the possible ways of testing our hypotheses. Does the long-term treatment of AST-120 decrease serum and tissue levels of AGEs in diabetic patients? Does this treatment also reduce the risk for the development and progression of diabetic vascular complications such as diabetic retinopathy or ischemic heart disease? If the answers are yes, do the serum and/or tissue levels of AGEs after AST-120 treatment predict its beneficial effects on diabetic vascular complications? How about the effects of AST-120 on Alzheimer’s disease, another AGE-related neurodegenerative disorder? Does the treatment of AST-120 reduce the risk for Alzheimer’s disease and/or improve the cognitive impairment of patients with this disorder? These prospective studies will provide further valuable information whether the inhibition of absorption of dietary AGEs by AST-120 could be clinically relevant.

There are no comments yet on this publication. Be the first to share your thoughts.