Étude de l'Intrication dans les Algorithmes Quantiques : Approche Géométrique et Outils Dérivés
- Authors
- Publication Date
- Oct 16, 2020
- Source
- HAL-Descartes
- Keywords
- Language
- French
- License
- Unknown
- External links
Abstract
L’intrication quantique est un des phénomènes les plus intéressants et intriguant en Mécanique Quantique, et de surcroît en Théorie de l’Information Quantique. Ressource fondamentale pour le calcul quantique, son rôle dans l’efficacité et la fiabilité des protocoles ou algorithmes quantiques n’est toujours pas totalement compris. Dans cette thèse, nous étudions l’intrication quantique des états multipartites, et notamment la nature de sa présence dans les algorithmes quantiques. L’étude de l’intrication se fait d’un point de vue théorique, en utilisant principalement des outils issus de la géométrie algébrique.Nous nous intéressons alors aux algorithmes de Grover et de Shor et déterminons quelles sont les classes d’intrication présentes (ou non) dans ces algorithmes, et ceci constitue donc une étude qualitative de l’intrication. De plus, nous mesurerons l’intrication quantitativement, à l’aide de mesures algébriques et géométriques, et étudions son évolution tout au long des différentes étapes de ces algorithmes. Nous proposons également des interprétations géométriques originales de ces résultats numériques.D’autre part, nous cherchons également à développer et exploiter de nouveaux outils pour mesurer, caractériser et classifier l’intrication quantique. Ceci se fait dans un premier temps d’un point de vue mathématique en étudiant les singularités des hypersurfaces liées aux systèmes quantiques pour caractériser différentes classes d’intrication. Dans un second temps, nous proposons des candidats pour les états maximalement intriqués, notamment pour les états symétriques et fermioniques, en utilisant des polynômes invariants et une mesure géométrique de l’intrication pour quantifier l’intrication. Enfin, nous avons également adopté une approche de type Machine Learning, notamment en entraînant des réseaux de neurones artificiels de manière supervisée, afin de reconnaitre certaines variétés algébriques modélisant certains types d’intrication précis.