Affordable Access

Étude biochimique et biophysique de l’ARN hélicase UPF1 : un moteur moléculaire hautement régulé

Authors
  • Kanaan, Joanne
Publication Date
Jul 09, 2018
Source
HAL-UPMC
Keywords
Language
French
License
Unknown
External links

Abstract

UPF1 (Up-Frameshift 1) est une hélicase multifonctionnelle conservée chez tous les eucaryotes. Elle est essentielle à la voie de surveillance du NMD (Nonsense Mediated mRNA Decay), qui dégrade des ARNm portant un codon stop prématuré. UPF1 est l’archétype d’une famille d’hélicases qui partagent des corps similaires mais sont impliquées dans des voies cellulaires variées. Cependant, les relations structure-fonction et les caractéristiques biophysiques intrinsèques de ces moteurs moléculaires restent à ce jour peu connues. In vitro, le coeur hélicase d’UPF1 est hautement processif, il traverse des milliers de bases sur l’ARN ou l’ADN et déroule des doubles brins. Dans ce travail, nous avons cherché les facteurs clés régissant cette remarquable processivité en combinant des techniques de biochimie et de biophysique. En particulier, nous avons utilisé des pinces magnétiques pour étudier en temps réel des hélicases à l’échelle de la molécule unique. Contrairement à UPF1, l’hélicase IGHMBP2 de la famille UPF1-like n’est pas processive ; la processivité n’est donc pas un trait conservé au sein de la famille. Grâce à une étude fine de la structure 3D des deux hélicases, nous avons conçu divers mutants que nous avons utilisés pour identifier les éléments structuraux qui modulent la processivité. Notre approche révèle qu’UPF1 a une prise très ferme sur les acides nucléiques, garantissant de longs temps de résidence et d’action qui dictent sa haute processivité. Grâce à la variété de comportements des mutants, nous avons construit un modèle mécanistique expliquant le lien entre énergie d’interaction et processivité. Nous démontrons aussi que la processivité d’UPF1 est requise pour un processus de NMD efficace in vivo. Nous avons utilisé les mêmes outils biochimiques et biophysiques pour étudier une isoforme naturelle d’UPF1 humaine se déplaçant plus vite que l’isoforme majeure, et pour comparer la régulation d’UPF1 humaine et de levure par leurs domaines flanquants. Nous avons également caractérisé l'interaction d’UPF1 de levure avec de nouveaux partenaires. Nos travaux montrent comment la combinaison d'outils biochimiques, biophysiques, structuraux etin vivo offre des aperçus inattendus quant au mode de fonctionnement des moteurs moléculaires.

Report this publication

Statistics

Seen <100 times