Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Dynamic polarizabilities of Zn and Cd and dispersion coefficients involving group 12 atoms.

Authors
  • Qiao, L W
  • Li, P
  • Tang, K T
Type
Published Article
Journal
The Journal of Chemical Physics
Publisher
American Institute of Physics
Publication Date
Aug 28, 2012
Volume
137
Issue
8
Pages
84309–84309
Identifiers
DOI: 10.1063/1.4746155
PMID: 22938235
Source
Medline
License
Unknown

Abstract

The refractive index data for Zn and Cd measured by Goebel and Hohm are analyzed with a three-term Maxwell-Sellmeier expression which incorporates the experimental oscillator strengths of the first two dipole transitions. These expressions are extended to imaginary frequencies for the determination of the upper and lower bounds of the dynamic polarizabilities α(iω), from which the van der Waals coefficients of two-body interactions and the non-additive three-body interactions are generated. The determined C(6) values for Zn(2) (359±8 a.u.) and Cd(2) (686±10 a.u.) are much larger than those originally estimated by Goebel and Hohm. This is because their one-term approximation of α(ω), which fits the measurements very well in the normal frequency range, greatly underestimates α(iω) when the frequency is extended into the imaginary domain. On the other hand, the present results of heteronuclear interactions verify once again that Tang's one-term approximation of α(iω) leads to accurate combining rules. The two- and three-body interaction coefficients between group 12 atoms (Zn, Cd, Hg) and the alkali, alkaline-earth, rare-gas atoms, and some molecules are estimated with these combining rules.

Report this publication

Statistics

Seen <100 times