Affordable Access

deepdyve-link
Publisher Website

Dynamic control of nanoprecipitation in a nanopipette.

Authors
Type
Published Article
Journal
ACS Nano
Publisher
American Chemical Society
Volume
5
Issue
4
Pages
3191–3191
Identifiers
DOI: 10.1021/nn200320b
Source
UCSC Bioengineering biomedical-ucsc
License
Unknown

Abstract

Studying the earliest stages of precipitation at the nanoscale is technically challenging but quite valuable as such phenomena reflect important processes such as crystallization and biomineralization. Using a quartz nanopipette as a nanoreactor, we induced precipitation of an insoluble salt to generate oscillating current blockades. The reversible process can be used to measure both kinetics of precipitation and relative size of the resulting nanoparticles. Counter ions for the highly water-insoluble salt zinc phosphate were separated by the pore of a nanopipette and a potential applied to cause ion migration to the interface. By analyzing the kinetics of pore blockage, two distinct mechanisms were identified: a slower process due to precipitation from solution, and a faster process attributed to voltage-driven migration of a trapped precipitate. We discuss the potential of these techniques in studying precipitation dynamics, trapping particles within a nanoreactor, and electrical sensors based on nanoprecipitation.

Report this publication

Statistics

Seen <100 times