Affordable Access

Dynamic Analysis and Security Characteristics of Carrier-Based Aircraft Arresting in Yaw Condition

  • peng, yiming
  • xie, pengpeng
  • wei, xiaohui
  • nie, hong
Publication Date
Feb 13, 2020
External links


In order to research the safety characteristics of carrier-based aircraft in yaw arrest, a complete dynamic model of the arresting system of a certain type of aircraft was developed to understand more about its dynamic properties. Based on the discrete kink-wave model, a simulation of centering arrest was conducted. The simulation results were compared with experimental data from the United States (US) military standards, demonstrating that the basic changing laws are almost the same. On the basis of centering arrest, a simulation of yaw arrest was carried out. The results show that in yaw state, the difference in the lengths of the arresting cables on either side of the hook is smaller in the early stage after the hook hangs on the rope, which leads to little influence on load fluctuation produced by the kink-wave. With the increase in arresting distance, the difference in the lengths of the arresting cables on either side becomes larger, resulting in a situation in which the cable tension on the departure side will gradually become greater than that on the opposite side. In this situation, yaw landing has a negative impact on the characteristics of arresting safety, and the excessive yaw angle causes the aircraft to rush out of the safe landing area.

Report this publication


Seen <100 times