Affordable Access

Drift wave instability and turbulence in advanced stallarator configurations

  • Kendl, A.
  • Max-Planck-Institut fuer Plasmaphysik, G...
Publication Date
Jan 01, 2001
OpenGrey Repository


In the following chapter, an overview and references on the physics and geometry of helical advanced stellarators is given. On the basis of this configuration, the influence of magnetic field geometry is then discussed in a basic model of drift-Alfven wave turbulence which contains the necessary physics that applies to the plasma edge. By means of linear models, core physics in the form of ITG and dissipative trapped electron modes is further included in our survey. These models are, of course, by far not comprehensive in order to cover the complex physics of plasma turbulence in three-dimensional fusion devices, where a large range of parameter and mode regimes is present. Optimization criteria for a possible systematic minimization of turbulent transport in Helias configurations therefore still have to be regarded as tentative. The results presented here should, however, encourage for more detailed future computations. (orig.) / Available from TIB Hannover: RA 71(5/95) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische Informationsbibliothek / SIGLE / DE / Germany

Report this publication


Seen <100 times