Affordable Access

Do imipramine and dihydroergosine possess two components--one stimulating 5-HT1 and the other inhibiting 5-HT2 receptors?

Authors
Type
Published Article
Journal
Life Sciences
0024-3205
Publisher
Elsevier
Publication Date
Volume
46
Issue
19
Pages
1331–1342
Identifiers
PMID: 2111865
Source
Medline

Abstract

The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-induced stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT1 receptor sites, but not by ritanserin, a specific 5-HT2 receptor antagonist. (-)-Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. Neither imipramine nor dihydroergosine were able to stimulate the 5-HT syndrome in the animals pretreated with p-chlorophenylalanine. As expected, 8-OH-DPAT, a selective 5-HT1A receptor agonist, stimulated, and 5-HT1B agonists CGS 12066B and 1-(trifluoromethylphenyl)piperazine (TFMPP) failed to stimulate the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer than after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for 3H-ketanserin binding sites than imipramine. The results suggest that imipramine and dihydroergosine possess two components--one stimulating the 5-HT syndrome in rats by a presynaptic, presumably 5-HT1A-mediated mechanism, and the other inhibiting 5-HT2 binding sites.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments