Affordable Access

deepdyve-link deepdyve-link
Publisher Website

DNA sensing by amplifying the number of near-infrared emitting, oligonucleotide-encapsulated silver clusters.

Authors
  • Petty, Jeffrey T
  • Sengupta, Bidisha
  • Story, Sandra P
  • Degtyareva, Natalya N
Type
Published Article
Journal
Analytical Chemistry
Publisher
American Chemical Society
Publication Date
Aug 01, 2011
Volume
83
Issue
15
Pages
5957–5964
Identifiers
DOI: 10.1021/ac201321m
PMID: 21702495
Source
Medline
License
Unknown

Abstract

A bifunctional oligonucleotide integrates in situ synthesis of a fluorogenic silver cluster with recognition of a target DNA sequence. With the template C(3)AC(3)AC(3)GC(3)A, a complex forms with 10 silver atoms that possesses electronic transitions in the near-infrared and that is detected at nanomolar concentrations using diode laser excitation. Pendant to this cluster encoding region, the recognition component binds a target DNA strand through hybridization, and decoupling of these two regions of the composite sensor renders a modular sensor for specific oligonucleotides. A target is detected using a quencher strand that bridges the cluster template and recognition components and disturbs cluster binding, as indicated by static quenching. Competitive displacement of the quencher by the target strand restores the favored cluster environment, and our key finding is that this exchange enhances emission through a proportional increase in the number of emissive clusters. DNA detection is also accomplished in serum-containing buffers by taking advantage of the high brightness of this fluorophore and the inherently low endogenous background in the near-infrared spectral region. Cluster stability in this biological environment is enhanced by supplementing the solutions with Ag(+).

Report this publication

Statistics

Seen <100 times