Affordable Access

Distortions of the Helicoid

Authors
Type
Published Article
Publication Date
Submission Date
Source
arXiv
External links

Abstract

Colding and Minicozzi have shown that an embedded minimal disk $0\in\Sigma\subset B_R$ in $\Real^3$ with large curvature at 0 looks like a helicoid on the scale of $R$. Near 0, this can be sharpened: on the scale of $|A|^{-1}(0)$, $\Sigma$ is close, in a Lipschitz sense, to a piece of a helicoid. We use surfaces constructed by Colding and Minicozzi to see this description cannot hold on the scale $R$.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments