Affordable Access

Dissecting the RecA-(In)dependent Response to Mitomycin C in Mycobacterium tuberculosis Using Transcriptional Profiling and Proteomics Analyses

  • Brzostek, Anna
  • Minias, Alina
  • Ciszewska, Aneta
  • Gąsior, Filip
  • Pawełczyk, Jakub
  • Dziadek, Jarosław
  • Płociński, Przemysław
  • Dziadek, Bozena
  • Słomka, Marcin
Publication Date
Nov 10, 2021
Repozytorium Uniwersytetu Łódzkiego (University of Lodz Repository)
External links


Institutional Review Board Statement: The experimental procedures were approved and conducted according to guidelines of the appropriate Polish Local Ethics Commission for Experiments on Animals No. 9 in Lodz (Agreement 9/ŁB87/2018). Acknowledgments: We thank Jeremy Rock and Sarah Fortune for providing us with the pLJR965 vector and detailed instructions for the generation of Cas9-regulated strains in M. tuberculosis. The authors thank the mass spectrometry service at the Institute of Biochemistry and Biophysics PAS in Warsaw for MS analysis. The MS analysis equipment used for the analysis was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project cosponsored by the European Regional Development Fund and Innovative Economy, the National Cohesion Strategy of Poland. / Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as Mycobacterium tuberculosis, are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of Mycobacterium smegmatis, a free-living and nonpathogenic mycobacterium. The aim of the present study was to identify elements of RecA-independent responses to DNA damage in pathogenic intracellular mycobacteria. With the help of global transcriptional profiling, we were able to dissect RecA-dependent and RecA-independent pathways. We profiled the DNA damage responses of an M. tuberculosis strain lacking the recA gene, a strain with an undetectable level of the PafBC regulatory system, and a strain with both systems tuned down simultaneously. RNA-Seq profiling was correlated with the evaluation of cell survival in response to DNA damage to estimate the relevance of each system to the overall sensitivity to genotoxic agents. We also carried out whole-cell proteomics analysis of the M. tuberculosis strains in response to mitomycin C. This approach highlighted that LexA, a well-defined key element of the SOS system, is proteolytically inactivated during RecA-dependent DNA repair, which we found to be transcriptionally repressed in response to DNA-damaging agents in the absence of RecA. Proteomics profiling revealed that AlkB was significantly overproduced in the ΔrecA pafBCCRISPRi/dCas9 strain and that Holliday junction resolvase RuvX was a DNA damage response factor that was significantly upregulated regardless of the presence of functional RecA and PafBC systems, thus falling into a third category of DNA damage factors: RecA- and PafBC-independent. While invisible to the mass spectrometer, the genes encoding alkA, dnaB, and dnaE2 were significantly overexpressed in the ΔrecA pafBCCRISPRi/dCas9 strain at the transcript level. / A.B. was supported by grant “OPUS” from the National Science Centre, Poland, UMO2015/19/B/NZ6/02978. P.P. was supported by grant “OPUS” from the National Science Centre, Poland, UMO-2019/33/B/NZ1/02770.

Report this publication


Seen <100 times