Affordable Access

Dissecting megakaryocytopoiesis in vivo with toxigenes.

  • Marguerie, G
  • Roullot, V
  • Tronik-Le Roux, D
Published Article
Stem cells (Dayton, Ohio)
Publication Date
Jan 01, 1996
14 Suppl 1
PMID: 11012222


The genetic programs that regulate the commitment of a totipotent stem cell to the megakaryocytic lineage remain poorly defined and require appropriate in vivo models. Using a cell-specific obliteration technique, a transgenic mouse model was produced where perturbations of megakaryocytopoiesis and platelet production may be induced on demand. This was achieved by targeting the expression of the herpes virus thymidine kinase (HSV-tk) to megakaryocytes using the regulatory regions of the gene coding for the alphaIIb gene, an early marker of megakaryocytopoiesis, which encodes the alpha subunit of the platelet integrin alphaIIb beta3. The HSV-tk gene is not toxic by itself, but sensitizes the target cell to the effect of ganciclovir (GCV), leading to the inhibition of DNA synthesis in dividing cells. The programmed eradication of the megakaryocytic lineage was induced by treating transgenic mice bearing the hybrid construct (alphaIIb-tk) with GCV. After 10 days of treatment, the platelet number was reduced by greater than 96.5% and megakaryocytes were not detectable in the bone marrow (BM). After discontinuing GCV, BM was repopulated with megakaryocytes, and the platelet count was restored within seven days. The recovery was accelerated by the administration of interleukin 11. Prolonged GCV treatment induced erythropenia in the transgenic mice. Assays of myeloid progenitor cells in vitro demonstrated that the transgene was expressed in early erythro-megakaryocytic bipotent progenitor cells. The reversibility and facility of this system provide a powerful model to determine both the critical events in megakaryocytic and erythroid lineage development, and for evaluating the precise role that platelets play in the pathogenesis of a number of vascular occlusive disorders.

Report this publication


Seen <100 times