Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Differential response of peripheral arterial compliance-related indices to a vasoconstrictive stimulus.

  • Guerrisi, Maria
  • Vannucci, Italo
  • Toschi, Nicola
Published Article
Physiological measurement
Publication Date
Jan 01, 2009
DOI: 10.1088/0967-3334/30/1/006
PMID: 19104136


Peripheral arterial elastic properties are greatly affected by cardiovascular as well as other pathologies, and their assessment can provide useful diagnostic indicators. The photoplethysmographic technique can provide finger blood volume and pressure waveforms non-invasively, which can then be processed statically or beat-to-beat to characterize parameters of the vessel wall mechanics. We employ an occlusion-deflation protocol in 48 healthy volunteers to study peripheral artery compliance-related indices over positive and negative transmural pressure values as well as under the influence of a valid vasoconstrictor (cigarette smoking). We calculate beat-to-beat indices (compliance index CI, distensibility index DI, three viscoelastic model parameters (compliance C, viscosity R and inertia L), pressure-volume loop areas A and damping factor DF as well as symmetrical (C(max)) and asymmetrical (C(A)(max)) static compliance estimates, and their distributions over transmural pressure. All distributions are bell-shaped and centred on negative transmural pressure values. Distribution heights were significantly lower in the smoking group (w.r.t. the non-smoking group) for C, CI, DI and significantly higher in R and DF. The estimated volume signal time lag was also significantly lower in the smoking group. Left and right distribution widths were significantly different in all parameters/groups but DI (both groups), C(A)(max), A (smoking group) and L (non-smoking group), and positions of maxima/minima were significantly altered in C(A)(max), R and DF. C, DF and CI are seen to be most sensitive under this protocol, while C(max) and C(A)(max) are seen to be insensitive. These quantities provide complementary, time- and transmural pressure-dependent information about arterial wall mechanics, and the choice of index should depend on the physiological conditions at hand as well as relevant time resolution and transmural pressure range.

Report this publication


Seen <100 times