Affordable Access

Access to the full text

The Difference in Low-Temperature Tolerance of Arabidopsis thaliana Plants and Its Ethylene-Insensitive Mutants Is Related to Activities of Antioxidant Enzymes

Authors
  • Sin’kevich, M. S.1
  • Naraikina, N. V.1
  • Alieva, G. P.1
  • Astakhova, N. V.1
  • Trunova, T. I.1
  • Moshkov, I. E.1
  • 1 Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia , Moscow (Russia)
Type
Published Article
Journal
Russian Journal of Plant Physiology
Publisher
Pleiades Publishing
Publication Date
Oct 18, 2020
Volume
67
Issue
6
Pages
1083–1093
Identifiers
DOI: 10.1134/S1021443720050155
Source
Springer Nature
Keywords
License
Yellow

Abstract

AbstractArabidopsis thaliana Heynh. (L.) plants of the Columbia ecotype (Col-0) and its ethylene-insensitive etr1-1 (ethylene resistant 1) and ein2-1 (ethylene insensitive 2) mutants were studied. The plants were compared in respect to their cold tolerance conferred by cold acclimation. The tolerance to negative temperature increased in all the three genotypes after 5-day cooling of the plants at 2°C. Meanwhile, a quantitative difference was observed between them: the Col-0 plants survived better than the mutants, and the electrolyte leakage from the tissues reached 50% at higher (by 1°C and more) temperature in the hardened mutants than in the Col-0. Only the mutants manifested the increased lipid peroxidation over the hardening period; this indicates ROS production and general oxidative stress. From this point, we speculated that the tested Arabidopsis genotypes are different in the efficiency of their antioxidant systems. For testing, the total activities of the chief antioxidant enzymes superoxide dismutase (SOD) and catalase, including their isoenzymes, were monitored in the course of hardening. The total SOD activity was found to be lower in the mutants than in the Col-0 both at the normal growing temperature and over the whole time of the cold hardening. The isozyme analysis revealed the link of the reduced total SOD activity of the mutants with the reduced activity of their Cu/Zn-SOD isoforms at 22°C and at the beginning of the hardening. This relationship was supported by the lower relative content of the CSD1 and CSD2 gene transcripts of Cu/Zn-SOD in the mutants in comparison with the Col-0. The decrease in the total catalase activity was also observed and would be ascribed to the lowered activity of the CAT2 isoform. The reported results evidence to the principal feasibility of the ethylene signaling control of the Cu/Zn-SOD and catalase activities associated with the cold acclimation of Arabidopsis.

Report this publication

Statistics

Seen <100 times