Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Diencephalic locomotor region in the lamprey--afferents and efferent control.

Authors
  • Ménard, Ariane
  • Grillner, Sten
Type
Published Article
Journal
Journal of neurophysiology
Publication Date
Sep 01, 2008
Volume
100
Issue
3
Pages
1343–1353
Identifiers
DOI: 10.1152/jn.01128.2007
PMID: 18596192
Source
Medline
License
Unknown

Abstract

In vertebrates, locomotion can be initiated by stimulation of the diencephalic locomotor region (DLR). Little is known of the different forebrain regions that provide input to the neurons in DLR. In the lamprey, it had been shown previously that DLR provides monosynaptic input to reticulospinal neurons, which in turn elicit rhythmic ventral root activity at the spinal level. To show that actual locomotor movements are produced from DLR, we use a semi-intact preparation in which the brain stem is exposed and the head fixed, while the body is left to generate actual swimming movements. DLR stimulation induced symmetric locomotor movements with an undulatory wave transmitted along the body. To explore if DLR is under tonic GABAergic input under resting conditions, as in mammals, GABAergic antagonists and agonists were locally administered into DLR. Injections of GABA agonists inhibited locomotion, whereas GABA antagonists facilitated the induction of locomotion. These findings suggest that GABAergic projections provide tonic inhibition that once turned off can release locomotion. Double-labeling experiments were carried out to identify GABAergic projections to the DLR. Populations of GABAergic projection neurons to DLR originated in the caudoventral portion of the medial pallium, the lateral and dorsal pallium, and the striatal area. These different GABAergic projection neurons, which also project to other brain stem motor centers, may represent the basal ganglia output to DLR. Moreover, electrical stimulation of striatum induced long-lasting plateau potentials in reticulospinal cells and associated locomotor episodes dependent on DLR being intact, suggesting that striatum may act via the basal ganglia output identified here.

Report this publication

Statistics

Seen <100 times