Affordable Access

Access to the full text

Dielectronic Recombination of Argon-Like Ions

Authors
  • Nikolić, D.
  • Gorczyca, T. W.
  • Korista, K. T.
  • Badnell, N. R.
Type
Preprint
Publication Date
Mar 24, 2010
Submission Date
Mar 24, 2010
Identifiers
DOI: 10.1051/0004-6361/201014485
Source
arXiv
License
Yellow
External links

Abstract

We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence.

Report this publication

Statistics

Seen <100 times