Affordable Access

Publisher Website

Role of a topological defect in the local structure transformation on clean Ge(0 0 1) surface by STM

Authors
Journal
Surface Science
0039-6028
Publisher
Elsevier
Publication Date
Volume
593
Identifiers
DOI: 10.1016/j.susc.2005.06.055
Keywords
  • Ge(0 0 1) Surface
  • Scanning Tunneling Microscopy
  • Inelastic Process
  • Reconstruction
  • Electronic Excitation
  • C(4 × 2)
  • P(2 × 2)
Disciplines
  • Mathematics

Abstract

Abstract The transformation rate of the local superstructure from c(4 × 2) to p(2 × 2) is studied on the clean Ge(0 0 1) surface at 80 K by scanning tunneling microscopy (STM). The transformation is reversible and shows hysteresis for the direction of the sample bias voltage change. The rate was found to depend on the width of the terrace. The results are explained by the mechanism that a topological defect between c(4 × 2) and p(2 × 2) structures are formed and moved by the electronic excitation from the tunneling electron to the Ge lattice. The electronic structure of the defect obtained by first-principles calculation is consistent with the bias-dependent STM images.

There are no comments yet on this publication. Be the first to share your thoughts.