Affordable Access

Publisher Website

A new population seeding technique for permutation-coded Genetic Algorithm: Service transfer approach

Elsevier B.V.
DOI: 10.1016/j.jocs.2013.05.009
  • Genetic Algorithm
  • Population Seeding Technique
  • Traveling Salesman Problem
  • Order Distance Vector
  • Combinatorial Problem
  • Design
  • Mathematics


Abstract Genetic Algorithm (GA) is a popular heuristic method for dealing complex problems with very large search space. Among various phases of GA, the initial phase of population seeding plays an important role in deciding the span of GA to achieve the best fit w.r.t. the time. In other words, the quality of individual solutions generated in the initial population phase plays a critical role in determining the quality of final optimal solution. The traditional GA with random population seeding technique is quite simple and of course efficient to some extent; however, the population may contain poor quality individuals which take long time to converge with optimal solution. On the other hand, the hybrid population seeding techniques which have the benefit of good quality individuals and fast convergence lacks in terms of randomness, individual diversity and ability to converge with global optimal solution. This motivates to design a population seeding technique with multifaceted features of randomness, individual diversity and good quality. In this paper, an efficient Ordered Distance Vector (ODV) based population seeding technique has been proposed for permutation-coded GA using an elitist service transfer approach. One of the famous combinatorial hard problems of Traveling Salesman Problem (TSP) is being chosen as the testbed and the experiments are performed on different sized benchmark TSP instances obtained from standard TSPLIB [54]. The experimental results advocate that the proposed technique outperforms the existing popular initialization methods in terms of convergence rate, error rate and convergence time.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times