Affordable Access

Access to the full text

Development of a thermostable microneedle patch for polio vaccination

Authors
  • Kolluru, Chandana
  • Gomaa, Yasmine
  • Prausnitz, Mark R.
Type
Published Article
Journal
Drug Delivery and Translational Research
Publisher
Springer US
Publication Date
Dec 12, 2018
Volume
9
Issue
1
Pages
192–203
Identifiers
DOI: 10.1007/s13346-018-00608-9
Source
Springer Nature
Keywords
License
Green

Abstract

The aim of this study was to develop a dissolving microneedle (MN) patch for administration of inactivated polio vaccine (IPV) with improved thermal stability when compared with conventional liquid IPV. Excipient screening showed that a combination of maltodextrin and D-sorbitol in histidine buffer best preserved IPV activity during MN patch fabrication and storage. As determined by D-antigen ELISA, all three IPV serotypes maintained > 70% activity after 2 months and > 50% activity after 1-year storage at 5 °C or 25 °C with desiccant. Storage at 40 °C yielded > 40% activity after 2 months and > 20% activity after 1 year. In contrast, commercial liquid IPV types 1 and 2 lost essentially all activity within 1 month at 40 °C and IPV type 3 had < 40% activity. Residual moisture content in MN patches measured by thermogravimetric analysis was 1.2–6.5%, depending on storage conditions. Glass transition temperature measured by differential scanning calorimetry, structural changes measured by X-ray diffraction, and molecular interactions measured by Fourier transform infrared spectroscopy showed changes in MN matrix properties, but they did not correlate with IPV activity changes during storage. We conclude that appropriately formulated MN patches can exhibit thermostability that could enable distribution of IPV with less reliance on cold chain storage.

Report this publication

Statistics

Seen <100 times