Affordable Access

Determination of PM Flux Linkage Based on Minimum Saliency Tracking for PM-SyR Machines without Rotor Movement

Authors
  • pescetto, p.
  • pellegrino, g.
Publication Date
Jan 01, 2020
Source
PORTO Publications Open Repository TOrino
Keywords
Language
English
License
Green
External links

Abstract

Permanent magnet assisted synchronous reluctance (PM-SyR) motors often present relevant magnetic saturation, especially if overload capability is exploited. The knowledge of current-to-flux relationship is mandatory for proper motor control, and it becomes even more critical in the case of sensorless applications. Reliable standstill self-commissioning tests have been recently developed for synchronous reluctance (SyR) motors without producing rotor movement. This procedure can be extended to PM-SyR motors, but being at standstill, it does not retrieve the flux contribution related to the permanent magnets (PMs). This article integrates the identification of the flux characteristics including a novel test for estimating the PM flux linkage, obtaining the complete magnetic characteristic of the PM-SyR motor. The identification session is performed at standstill and without a position transducer, independently of the mechanical load being connected or not. Such conditions are considered the most demanding for self-commissioning tests. The machine is first excited with a proper sequence of bipolar high voltage pulses to determine its current-dependent flux components. Then, the estimate of PM flux linkage is retrieved at standstill by evaluating the local saliency along the negative q-axis. The proposed method is supported by detailed finite element analysis and experimentally verified on two PM-SyR motor prototypes, confirming the accuracy of the PM flux linkage estimate.

Report this publication

Statistics

Seen <100 times