Affordable Access

Determination of the functions of hemolytic plasmid pHly152 of Escherichia coli.

  • A Noegel
  • U Rdest
  • W Goebel
Publication Date
Jan 01, 1981


The alpha-hemolytic Escherichia coli strain PM152 harbors three transmissible plasmids, which have molecular weights of 65 X 10(6) (pA152), 41 X 10(6) pHly152), and 32 X 10(6) (pC152). Plasmids pHly152 and pC152 belong to incompatibility groups J2 and N, respectively. By transforming E. coli K-12 with isolated plasmids, we showed that the genetic determinant required for hemolysis was located entirely on plasmid pHly152, and a physical map of this plasmid was constructed. By transposon mutagenesis, a deoxyribonucleic acid segment of about 3.5 X 10(6) daltons was identified as being essential for hemolysis. Most of the EcoRI and HindIII fragments of the hemolytic plasmid pHly152 were cloned by using pACYC184 and RSF2124 as vectors. Two classes of Tn3-induced hemolysis-negative mutants could be complemented by recombinant plasmids carrying fragments from the hemolysis region of pHly152, whereas a third class could be restored to hemolytic activity only by recombination between the mutant plasmids and a suitable recombinant deoxyribonucleic acid. These data suggest that there are at least three clustered cistrons which are required for hemolysis. Other EcoRI and HindIII fragments of pHly152 were identified as being essential for replication, incompatibility, transfer, and restriction.


Seen <100 times