Affordable Access

Design, Synthesis, and Biological Assessment of Biased Allosteric Modulation of the Urotensin II Receptor Using Achiral 1,3,4-Benzotriazepin-2-one Turn Mimics

Authors
  • Douchez, Antoine
  • Billard, Étienne
  • Hébert, Terence
  • Chatenet, David
  • Lubell, William
Publication Date
Dec 14, 2017
Source
Kaleidoscope Open Archive
Keywords
Language
English
License
Unknown
External links

Abstract

Benzotriazepin-2-ones were designed to mimic the suggested bioactive γ-turn conformation of the Bip-Lys-Tyr tripeptide in Urocontrin ([Bip4]URP), which modulates the urotensin II receptor (UT) and differentiates the effects of the endogenous ligands urotensin II (UII) and urotensin II-related peptide (URP). Twenty-six benzotriazepin-2-ones were synthesized by acylation of anthranilate-derived amino ketones with an aza-glycine equivalent, chemoselective nitrogen functionalization, and ring closure. Several mimics exhibited selective modulatory effects on hUII- and URP-associated vasoconstriction in an ex vivo rat aortic ring bioassay. The C5 p-hydroxyphenethenyl benzotriazepin-2-one 20g decreased hUII potency and efficacy without changing URP induced vasoconstriction. Its saturated phenethyl counterpart 23g decreased URP potency without influencing hUII-mediated contraction. To our knowledge, 20g and 23g represent the first achiral molecules that modulate selectively hUII and URP biological activities. Effectively synthesized, benzotriaepin-2-one turn mimics offer the potential to differentiate the respective roles, signaling pathways, and phenotypic outcomes of hUII and URP in the UT system.

Report this publication

Statistics

Seen <100 times