Affordable Access

On the Design of Steel Members with Open Cross-Sections Subject to Combined Axial Force, Bending and Torsion

Authors
  • Beyer, André
Publication Date
Nov 02, 2017
Source
Kaleidoscope Open Archive
Keywords
Language
English
License
Unknown
External links

Abstract

Structural steel members with open cross-section are, in the majority of cases, subject to a combination of axial forces and mono- or bi-axial bending. Nonetheless, owing to specific use they may be subject to torsion as well. Even if torsional loads are of practical interest for steel members of open section, the European standard for the design of steel structures, Eurocode 3, does not contain a generally accepted design method addressing the resistance of these members. Consequently, the main objective of this thesis is to close the lack in the current standard. So as to attain this objective the behaviour of members of open section subject to a complex load combination has been studied theoretically, experimentally and numerically. First, the plastic resistance of steel members has been analysed. It has been shown that members subject to torsion may possess a high plastic system reserve that cannot be predicted by simple elastic analysis. So as to account for the beneficial effect of the plastic reserve, a simplified analysis method has been developed and validated with numerical simulations. After this, the plastic interaction between all internal forces and moments has been studied. Several laboratory tests have been performed to characterise the interaction between bending moments and the shear force. The study is then extended to more complex interaction cases including torsion by means of numerical simulations. The laboratory test and the numerical simulations allowed the development of a precise resistance model based on the “Partial Internal Force Method” developed in the past. The last part of this thesis was dedicated to the member resistance including instability. A resistance model has been developed based on the Eurocode 3 interaction equations. So as to overcome some of the limitations linked to this method, a second design approach is developed based on the “Overall Interaction Concept”

Report this publication

Statistics

Seen <100 times