Affordable Access

Publisher Website

Design of protonated polyazamacrocycles based on phenanthroline motifs for selective uptake of aromatic carboxylate anions and herbicides.

Authors
Type
Published Article
Journal
Chemistry - A European Journal
0947-6539
Publisher
Wiley Blackwell (John Wiley & Sons)
Publication Date
Volume
15
Issue
13
Pages
3277–3289
Identifiers
DOI: 10.1002/chem.200800993
PMID: 19197928
Source
Medline

Abstract

Three novel large polyazamacrocycles containing two 1,10-phenanthroline units connected by different polyamine spacers have been synthesised and their protonated forms used as receptors for several aromatic carboxylate anions. The receptors bind to the anions in a 1:1 stoichiometry and exhibit remarkable binding selectivity (see figure). Analysis shows that molecular recognition is governed by pi-pi stacking interactions and multiple N--HO==C hydrogen bonds.Three novel large polyazamacrocycles containing two 1,10-phenanthroline (phen) units connected by two polyamine spacers of different length, [32]phen(2)N(4), [30]phen(2)N(6) and Me(2)[34]phen(2)N(6), have been synthesised and their protonated forms used as receptors for binding studies with several aromatic carboxylate anions (benzoate (bzc(-)), 1-naphthalate (naphc(-)), 9-anthracenate (anthc(-)), pyrene-1-carboxylate (pyrc(-)), phthalate, (ph(2-)), isophthalate (iph(2-)), terephthalate (tph(2-)), 2,5-dihydroxy-1,4-benzenediacetate (dihyac(2-)) and, 1,3,5-benzenetricarboxylate (btc(3-))) and three herbicides (4-amino-3,5,6-trichloropyridine-2-carboxylate (ATCP(-)), dichlorophenoxyacetate (2,4-D(-)) and glyphosate (PMG(2-))) in water solution. The [30]phen(2)N(6) receptor was found to be the most suitable for binding the anions considered in a 1:1 stoichiometry. The three receptors exhibit a remarkable binding selectivity towards the extended aromatic anion pyrc(-) at low pH values. Their binding affinities for the monocarboxylate anions decrease with the extension of the aromatic system in the order pyrc(-)>anthc(-)>naphc(-)>bzc(-), which indicates the presence of pi-pi stacking interactions in the molecular recognition of these anions. Molecular dynamics simulations carried out for the binding of {H(4)[30]phen(2)N(6)}(4+) and {H(6)Me(2)[34]phen(2)N(6)}(6+) with pyrc(-), anthc(-), naphc(-), iph(2-) and btc(3-) in water showed that these receptors adopt a folded conformation with the anion inserted between the two phen heads and that the molecular recognition is governed by pi-pi stacking interactions and multiple N--HO==C hydrogen bonds. The binding free energies estimated theoretically are very similar to those found by potentiometric methods, which supports the proposed binding arrangement.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F