Affordable Access

Publisher Website

Dense Packings of the Platonic and Archimedean Solids

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
DOI: 10.1038/nature08239
Source
arXiv
External links

Abstract

Dense packings have served as useful models of the structure of liquid, glassy and crystal states of matter, granular media, heterogeneous materials, and biological systems. Probing the symmetries and other mathematical properties of the densest packings is a problem of long-standing interest in discrete geometry and number theory. The preponderance of previous work has focused on spherical particles, and very little is known about dense polyhedral packings. We formulate the problem of generating dense packings of polyhedra within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem, which we call the Adaptive Shrinking Cell (ASC) scheme. This novel optimization problem is solved here (using a variety of multi-particle initial configurations) to find dense packings of each of the Platonic solids in three-dimensional Euclidean space. We find the densest known packings of tetrahedra, octahedra, dodecahedra and icosahedra with densities $0.782...$, $0.947...$, $0.904...$, and $0.836...$, respectively. Unlike the densest tetrahedral packing, which must be a non-Bravais lattice packing, the densest packings of the other non-tiling Platonic solids that we obtain are their previously known optimal (Bravais) lattice packings. Our simulations results, rigorous upper bounds that we derive, and theoretical arguments lead us to the strong conjecture that the densest packings of the Platonic and Archimedean solids with central symmetry are given by their corresponding densest lattice packings. This is the analog of Kepler's sphere conjecture for these solids.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments