Affordable Access

Deletion of a GC-rich region flanking the enhancer element within the long terminal repeat sequences alters the disease specificity of Moloney murine leukemia virus.

Authors
Type
Published Article
Journal
Journal of virology
Publication Date
Volume
65
Issue
10
Pages
5357–5363
Identifiers
PMID: 1895389
Source
Medline
License
Unknown

Abstract

Moloney murine leukemia virus (M-MuLV) is a replication-competent retrovirus which induces T-lymphoblastic lymphoma 2 to 4 months after inoculation. Enhancer sequences in the U3 region of the M-MuLV long terminal repeat, primarily the 75-bp tandem repeats, strongly influence the disease specificity and latency of M-MuLV. We investigated the role of GC-rich sequences downstream of the tandem repeats in the disease specificity of M-MuLV. A recombinant M-MuLV lacking 23 bases of a GC-rich sequence (-174 to -151), Delta 27A M-MuLV, was tested for pathogenesis in neonatal NIH Swiss mice. Delta 27A M-MuLV induced disease with a longer latency than did M-MuLV (7 versus 3 months) in greater than 85% of inoculated mice. More interestingly, this virus showed an expanded repertoire of hematopoietic diseases. Molecular analyses and histopathologic examinations indicated that while 39% of mice inoculated with Delta 27A M-MuLV developed T-cell lymphoblastic lymphoma typical of wild-type M-MuLV, the majority developed acute myeloid leukemia, erythroleukemia, or B-cell lymphoma. Viral DNA corresponding to Delta 27A M-MuLV was detectable in most of the tumors analyzed. These findings indicate that the GC-rich region significantly influences the disease specificity and latency of M-MuLV.

Statistics

Seen <100 times