Affordable Access

deepdyve-link
Publisher Website

Deletion of Galectin-3 Enhances Xenobiotic Induced Murine Primary Biliary Cholangitis by Facilitating Apoptosis of BECs and Release of Autoantigens.

Authors
  • A, Arsenijevic
  • M, Milovanovic
  • J, Milovanovic
  • B, Stojanovic
  • N, Zdravkovic
  • Ps, Leung
  • Fu-Tong Liu
  • Me, Gershwin
  • Ml, Lukic
Type
Published Article
Journal
Scientific Reports
Publisher
Springer Nature
Volume
6
Identifiers
DOI: 10.1038/srep23348
Source
liulab-ucdavis
License
Unknown

Abstract

Galectin-3 (Gal-3) is a carbohydrate binding lectin, with multiple roles in inflammatory diseases and autoimmunity including its antiapoptotic effect on epithelial cells. In particular, increased expression of Gal-3 in epithelial cells is protective from apoptosis. Based on the thesis that apoptosis of biliary epithelial cells (BECs) is critical to the pathogenesis of Primary Biliary Cholangitis (PBC), we have analyzed the role of Gal-3 in the murine model of autoimmune cholangitis. We took advantage of Gal-3 knockout mice and immunized them with a mimotope of the major mitochondrial autoantigen of PBC, 2-octynoic acid (2-OA) coupled to BSA (2OA-BSA) and evaluated the natural history of subsequent disease, compared to control wild-type mice, by measuring levels of antibodies to PDC-E2, immunohistology of liver, and expression of Gal-3. We report herein that deletion of Gal-3 significantly exacerbates autoimmune cholangitis in these mice. This is manifested by increased periportal infiltrations, bile duct damage, granulomas and fibrosis. Interestingly, the BECs of Gal-3 knockout mice had a higher response to apoptotic stimuli and there were more pro-inflammatory lymphocytes and dendritic cells (DCs) in the livers of Gal-3 knockout mice. In conclusion, Gal-3 plays a protective role in the pathways that lead to the inflammatory destruction of biliary epithelial cells.

Report this publication

Statistics

Seen <100 times