Affordable Access

Deletion Formation between the Two Salmonella Typhimurium Flagellin Genes Encoded on the Mini F Plasmid: Escherichia Coli Ssb Alleles Enhance Deletion Rates and Change Hot-Spot Preference for Deletion Endpoints

Publication Date


Deletion formation between the 5'-mostly homologous sequences and between the 3'-homeologous sequences of the two Salmonella typhimurium flagellin genes was examined using plasmid-based deletion-detection systems in various Escherichia coli genetic backgrounds. Deletions in plasmid pLC103 occur between the 5' sequences, but not between the 3' sequences, in both RecA-independent and RecA-dependent ways. Because the former is predominant, deletion formation in a recA background depends on the length of homologous sequences between the two genes. Deletion rates were enhanced 30- to 50-fold by the mismatch repair defects, mutS, mutL and uvrD, and 250-fold by the ssb-3 allele, but the effect of the mismatch defects was canceled by the ΔrecA allele. Rates of the deletion between the 3' sequences in plasmid pLC107 were enhanced 17- to 130-fold by ssb alleles, but not by other alleles. For deletions in pLC107, 96% of the endpoints in the recA(+) background and 88% in ΔrecA were in the two hot spots of the 60- and 33-nucleotide (nt) homologous sequences, whereas in the ssb-3 background >50% of the endpoints were in four- to 14-nt direct repeats dispersed in the entire 3' sequences. The deletion formation between the homeologous sequences is RecA-independent but depends on the length of consecutive homologies. The mutant ssb allele lowers this dependency and results in the increase in deletion rates. Roles of mutant SSB are discussed with relation to misalignment in replication slippage.


Seen <100 times