Affordable Access

deepdyve-link
Publisher Website

Defining a no-reference image quality assessment by means of the self-affine analysis

Authors
  • Escobar, Jesús Jaime Moreno1
  • Matamoros, Oswaldo Morales1
  • Reyes, Ixchel Lina1
  • Padilla, Ricardo Tejeida2
  • Hernández, Liliana Chanona1
  • 1 Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Naiconal, México, México
  • 2 Escuela Superior de Turismo, Instituto Politécnico Naiconal, México, México
Type
Published Article
Journal
Multimedia Tools and Applications
Publisher
Springer-Verlag
Publication Date
Jan 22, 2021
Pages
1–16
Identifiers
DOI: 10.1007/s11042-020-10245-5
PMID: 33500679
PMCID: PMC7820528
Source
PubMed Central
Keywords
License
Unknown

Abstract

In this paper we propose a novel Blind Image Quality Assessment via Self-Affine Analysis ( BIQSAA ) method by considering the wavelet transform as a linear operation that decomposes a complex signal into elementary blocks at different scales or resolutions. BIQSAA decomposes a distorted image into a set of wavelet planes ω λ , ϕ of different spatial frequencies λ and spatial orientations ϕ , and it transforms these wavelet planes into one-dimension vector Ω using a Hilbert scanning. From the vector Ω there were obtained their wavelet coefficient fluctuations estimated by the inverse of the Hurst exponent in decibels, whose scaling-law or fractal behavior was obtained by applying Fractal Geometry or Self-Affine Analysis. The scaling exponents calculated for the coefficient fluctuation behavior of Image Lena at 24bpp, at 1.375bpp, and at 0.50bpp were H 24 b p p = 0.0395, H 1.375 b p p = 0.0551, and H 0.50 b p p = 0.0612, respectively. Our experiments show that BIQSAA algorithm improves in 14.36 % the Human Visual System correlation, respect to the four state-of-the-art No-Reference Image Quality Assessments.

Report this publication

Statistics

Seen <100 times