Affordable Access

Defect and dopant properties in CaMnO3

  • Kuganathan, N
  • Alexander, C
Publication Date
Apr 20, 2021
Infoscience @ EPFL
External links


CaMnO3-based ceramics have been the subject of considerable research due to their potential application in solid oxide fuel cells, thermoelectric generators, and catalysis. The computational modeling technique based on the classical pair-wise potentials has allowed atomic-scale insights into the defect chemistry, diffusion of Ca2+ and O2− ions, and solution of various dopants in this material. The Ca/Mn anti-site was found to be the most favorable intrinsic defect suggesting disorder, which would be sensitive to synthesis conditions. The second most favorable disorder in CaMnO3 involves loss of CaO, resulting in calcium and oxygen vacancies, which in turn can promote vacancy mediated self-diffusion. The activation energy for oxygen migration (1.25 eV) is much lower than that for calcium (4.42 eV). Favorable isovalent dopants on the Ca and Mn sites were found to be Fe2+ and Ge4+, respectively. The formation of O vacancies can be facilitated by doping of single dopants Fe2+ and Al3+ on the Mn site. Dual dopants Ni–Fe and Al–Ga on the Mn site can also facilitate the introduction of oxygen vacancies required for the vacancy assisted oxygen diffusion.

Report this publication


Seen <100 times