Affordable Access

Decomposition of protonated noradrenaline and normetanephrine assisted by NH2 migration studied by electrospray tandem mass spectrometry and molecular orbital calculations.

  • Rogalewicz, Françoise
  • Bourcier, Sophie
  • Hoppilliard, Yannik
Published Article
Rapid communications in mass spectrometry : RCM
Publication Date
Jan 01, 2005
PMID: 15712294


As part of a research program on neurotransmitters in a biological fluid, the fragmentations characterising catecholamines protonated under electrospray ionisation (ESI) conditions, under low collision energy in a triple-quadrupole mass spectrometer, were investigated. The decompositions of protonated noradrenaline (VH) and normetanephrine (VIH) were studied. Both precursor ions eliminate first H2O at very low collision energy, and the fragmentations of [MH-H2O]+ occur at higher collision energy. The breakdown graphs of [MH-H2O]+ ions, with collision energy varying from 0-40 eV in the laboratory frame, are presented. [VIH-H2O]+ ions lose competitively NH3 and CH3OH. For [VH-H2O]+ the loss of NH3 is dominant while H2O is eliminated at very low abundance at all collision energies. All of these secondary fragmentations are followed at higher collision energies by elimination of CO. These fragmentations are interpreted by means of ab initio calculations up to the B3LYP/6-311+G(2d,2p) level of theory. The elimination of H2O requires first the isomerisation of N-protonated forms, chosen as energy references, to O-protonated forms. The isomerisation barriers are calculated to be lower than 81 kJ/mol above the N-protonated forms. The elimination of NH3 from [MH-H2O]+ requires first the migration, via a cyclisation, of the amine function from the linear chain to the aromatic ring in order to prevent the formation of unstable disubstituted carbocations in the ring. The barriers associated with the loss of NH3 are located 220 and 233 kJ/mol above VH and 219 kJ/mol above VIH. The energy barrier for the loss of ROH is located 236 and 228 kJ/mol above VH and VIH, respectively. The absence of ions corresponding to [VH-2H2O]+ is due to a parasitic mechanism with an activation barrier lower than 236 kJ/mol that leads to a stable species unable to fragment, thus preventing the second loss of H2O. Losses of CO following the secondary fragmentations involve activation barriers higher than 330 kJ/mol.

Report this publication


Seen <100 times