Affordable Access

deepdyve-link
Publisher Website

Decomposition mechanisms of trinitroalkyl compounds: a theoretical study from aliphatic to aromatic nitro compounds.

Authors
Type
Published Article
Journal
Physical Chemistry Chemical Physics
Publisher
The Royal Society of Chemistry
Publication Date
Apr 13, 2014
Volume
16
Issue
14
Pages
6614–6622
Identifiers
DOI: 10.1039/c3cp54719a
PMID: 24569436
Source
Medline
License
Unknown

Abstract

The chemical mechanisms involved in the decomposition of trinitroethyl compounds were studied for both aliphatic and aromatic derivatives using density functional theory calculations. At first, in the case of 1,1,1-trinitrobutane, used as a reference molecule, two primary channels were highlighted among the five investigated ones: the breaking of the C-N bond and the HONO elimination. Then, the influence of various structural parameters was studied for these two reactions by changing the length of the carbon chain, adding substituents or double bonds along the carbon chain. If some slight changes in activation energies were observed for most of these features, no modification of the competition between the two investigated reactions was highlighted and the breaking of the C-N bond remained the favoured mechanism. At last, the reactions involving the trinitroalkyl fragments were highlighted to be more competitive than reactions involving nitro groups linked to aromatic cycles in two aromatic systems (4-(1,1,1-trinitrobutyl)-nitrobenzene and 2-(1,1,1-trinitrobutyl)-nitrobenzene). This showed that aromatic nitro compounds with trinitroalkyl derivatives decompose from their alkyl part and may be considered more likely as aliphatic than as aromatic regarding the initiation of their decomposition process.

Report this publication

Statistics

Seen <100 times