Affordable Access

Personalized Recommendations Based On Users’ Information-Centered Social Networks



The overwhelming amount of information available today makes it difficult for users to find useful information and as the solution to this information glut problem, recommendation technologies emerged. Among the several streams of related research, one important evolution in technology is to generate recommendations based on users’ own social networks. The idea to take advantage of users’ social networks as a foundation for their personalized recommendations evolved from an Internet trend that is too important to neglect – the explosive growth of online social networks. In spite of the widely available and diversified assortment of online social networks, most recent social network-based recommendations have concentrated on limited kinds of online sociality (i.e., trust-based networks and online friendships). Thus, this study tried to prove the expandability of social network-based recommendations to more diverse and less focused social networks. The online social networks considered in this dissertation include: 1) a watching network, 2) a group membership, and 3) an academic collaboration network. Specifically, this dissertation aims to check the value of users’ various online social connections as information sources and to explore how to include them as a foundation for personalized recommendations. In our results, users in online social networks shared similar interests with their social partners. An in-depth analysis about the shared interests indicated that online social networks have significant value as a useful information source. Through the recommendations generated by the preferences of social connection, the feasibility of users’ social connections as a useful information source was also investigated comprehensively. The social network-based recommendations produced as good as, or sometimes better, suggestions than traditional collaborative filtering recommendations. Social network-based recommendations were also a good solution for the cold-start user problem. Therefore, in order for cold-start users to receive reasonably good recommendations, it is more effective to be socially associated with other users, rather than collecting a few more items. To conclude, this study demonstrates the viability of multiple social networks as a means for gathering useful information and addresses how different social networks of a novelty value can improve upon conventional personalization technology.

There are no comments yet on this publication. Be the first to share your thoughts.