Affordable Access

Asymptotic hyperfunctions, tempered hyperfunctions, and asymptotic expansions

International Journal of Mathematics and Mathematical Sciences
Publication Date


We introduce new subclasses of Fourier hyperfunctions of mixed type, satisfying polynomial growth conditions at infinity, and develop their sheaf and duality theory. We use Fourier transformation and duality to examine relations of these asymptotic and tempered hyperfunctions to known classes of test functions and distributions, especially the Gel'fand-Shilov spaces. Further it is shown that the asymptotic hyperfunctions, which decay faster than any negative power, are precisely the class that allows asymptotic expansions at infinity. These asymptotic expansions are carried over to the higher-dimensional case by applying the Radon transformation for hyperfunctions.

There are no comments yet on this publication. Be the first to share your thoughts.