Affordable Access

Classification of Partial Discharge Signals using Probabilistic Neural Network

Publication Date
  • Computer Science
  • Mathematics


Partial Discharge (PD) classification in power cables and high voltage equipment is essential in evaluating the severity of the damage in the insulation. In this paper, the Probabilistic Neural Network (PNN) method is used to classify the PDs. After the algorithm has been trained it uses the input vector, which contains the features that would be used for classification, to calculate the probability density function (pdf) of each class and together with the assignment of a cost for a misclassification the decision that minimizes the expected risk is taken. The maximum likelihood training is employed here. The success of this particular method for classification is asserted. This method has the advantage over Multilayer Neural Network that it gives rapid training speed, guaranteed convergence to a Bayes classifier if enough training examples are provided (i.e. it approaches Bayes optimality), incremental training which is fast (i.e. additionally provided training examples can be incorporated without difficulties) and robustness to noisy examples. The results obtained here (99.3%, 84.3% and 85.5% for the corona, the floating in oil and the internal discharges respectively) are very encouraging for the use of PNN in PD classification.

There are no comments yet on this publication. Be the first to share your thoughts.