A Comparative analysis: QA evaluation questions versus real-world queries

Affordable Access

A Comparative analysis: QA evaluation questions versus real-world queries

  • Information Retrieval
  • Question Answering
  • Queries


This paper presents a comparative analysis of user queries to a web search engine, questions to a Q&A service (answers.com), and questions employed in question answering (QA) evaluations at TREC and CLEF. The analysis shows that user queries to search engines contain mostly content words (i.e. keywords) but lack structure words (i.e. stopwords) and capitalization. Thus, they resemble natural language input after case folding and stopword removal. In contrast, topics for QA evaluation and questions to answers.com mainly consist of fully capitalized and syntactically well-formed questions. Classification experiments using a na¨ıve Bayes classifier show that stopwords play an important role in determining the expected answer type. A classification based on stopwords is considerably more accurate (47.5% accuracy) than a classification based on all query words (40.1% accuracy) or on content words (33.9% accuracy). To simulate user input, questions are preprocessed by case folding and stopword removal. Additional classification experiments aim at reconstructing the syntactic wh-word frame of a question, i.e. the embedding of the interrogative word. Results indicate that this part of questions can be reconstructed with moderate accuracy (25.7%), but for a classification problem with a much larger number of classes compared to classifying queries by expected answer type (2096 classes vs. 130 classes). Furthermore, eliminating stopwords can lead to multiple reconstructed questions with a different or with the opposite meaning (e.g. if negations or temporal restrictions are included). In conclusion, question reconstruction from short user queries can be seen as a new realistic evaluation challenge for QA systems.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times