Affordable Access

A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase

The National Academy of Sciences
Publication Date
  • Biological Sciences


The active sites of aminopeptidase A (PepA) from Escherichia coli and leucine aminopeptidase from bovine lens are isostructural, as shown by x-ray structures at 2.5 Å and 1.6 Å resolution, respectively. In both structures, a bicarbonate anion is bound to an arginine side chain (Arg-356 in PepA and Arg-336 in leucine aminopeptidase) very near two catalytic zinc ions. It is shown that PepA is activated about 10-fold by bicarbonate when l-leucine p-nitroanilide is used as a substrate. No activation by bicarbonate ions is found for mutants R356A, R356K, R356M, and R356E of PepA. In the suggested mechanism, the bicarbonate anion is proposed to facilitate proton transfer from a zinc-bridging water nucleophile to the peptide leaving group. Thus, the function of the bicarbonate ion as a general base is similar to the catalytic role of carboxylate side chains in the presumed mechanisms of other dizinc or monozinc peptidases. A mutational analysis shows that Arg-356 influences activity by binding the bicarbonate ion but is not essential for activity. Mutation of the catalytic Lys-282 reduces kcat/Km about 10,000-fold.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times