Affordable Access

Autosomal Interactions and Mechanisms of Pyrethroid Resistance in House Flies, Musca domestica

International Journal of Biological Sciences
Ivyspring International Publisher
Publication Date
  • Research Paper


Five BC1 lines and 16 house fly mass-cross homozygous lines were generated from crosses of the pyrethroid resistant ALHF (wild-type) and susceptible aabys (bearing recessive morphological markers on each of five autosomes) strains. Each of the resulting homozygous lines had different combinations of autosomes from the resistant ALHF strain. Levels of resistance to permethrin were measured for each line to determine the autosomal linkage, interaction and, possibly, regulation in pyrethroid resistance of house flies. Results indicated that factors on autosome 4 are not involved in the development of resistance in house flies, while factors on autosomes 1, 2, 3 and 5 play important roles in pyrethroid resistance. The sodium channel gene has been mapped on autosome 3 and multiple cytochrome P450 genes overexpressed in resistant ALHF house flies have been genetically mapped on autosome 5, suggesting that P450 mediated detoxification and sodium channel-mediated target site insensitivity located on autosomes 3 and 5, respectively, are major factors related to resistance development in house flies. However, neither the factors on autosome 3 or 5 alone, nor the factors from both autosomes 3 and 5 combined could confer high levels of resistance to pyrethroid. In addition, strong synergistic effects on resistance was obtained when autosomes 1 and 2 interact with autosome 3 and/or 5, suggesting that the trans factors on autosomes 1 and 2 may interact with factors on autosomes 3 and 5, therefore, playing regulatory roles in the development of sodium channel insensitivity- and P450 detoxification-mediated resistance.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times