Affordable Access

Publisher Website

Chondroitin Sulphate Proteoglycan is Involved in Lens Vesicle Morphogenesis in Chick Embryos

Authors
Journal
Experimental Eye Research
0014-4835
Publisher
Elsevier
Publication Date
Volume
73
Issue
4
Identifiers
DOI: 10.1006/exer.2001.1060
Keywords
  • Lens Development
  • Cspg
  • β-D-Xyloside
  • Extracellular Matrix
  • Epithelial Invagination
Disciplines
  • Biology

Abstract

Abstract Proteoglycans have been implicated in the invagination and formation of various embryonal cavitied primordia. In this paper the expression of chondroitin sulphate proteoglycan (CSPG) is analysed in the lens primordium during lens vesicle formation, and demonstrate that this proteoglycan has a specific distribution pattern with regard to invagination and fusion processes in the transformation of placode into lens vesicle. More specifically, CSPG was detected in: (1) the apical surface of lens epithelial cells, where early CSPG expression was observed in the whole of the lens placode whilst in the vesicle phase it was restricted to the posterior epithelium; (2) intense CSPG expression in the basal lamina, which remained constant for the entire period under study; (3) CSPG expression in the intercellular spaces of the lens primordium epithelium, which increased during the invagination of the primordium and which at the vesicle stage was more evident in the posterior epithelium; and (4) CSPG expression on the edges of the lens placode both prior to and during fusion. Treatment with β- D -xyloside causes significant CSPG depletion in the lens primordium together with severe alterations in the invagination and fusion of the lens vesicle; this leads to the formation of lens primordia which in some cases remain practically flat or show partial invagination defects or fusion disruption. Similar results were obtained by enzyme digestion with chondroitinase AC but not with type II heparinase, which indicates that alterations induced by β- D -xyloside were due to interference in CSPG synthesis. The findings demonstrate that CSPG is a common component of the lens primordium at the earliest developmental stages during which it undergoes specific modifications. It also includes experimental evidence to show that ‘in vivo’ CSPG plays an important role in the invagination and fusion processes of the lens primordium.

There are no comments yet on this publication. Be the first to share your thoughts.